Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Wen-Kui Dong,* Xiao-Qing Yang and Jian-Hua Feng

School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China

Correspondence e-mail: dongwk@mail.Izjtu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.043$
$w R$ factor $=0.106$
Data-to-parameter ratio $=13.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
N-Benzoyl- N^{\prime}-(3-pyridyl)thiourea

The molecule of the title compound, $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{OS}$, is nonplanar; the dihedral angles between the thiourea and pyridine planes and between the thiourea and benzene planes are 41.28 (8) and 27.47 (8) ${ }^{\circ}$, respectively.

Comment

Thiourea and its derivatives have attracted much attention because of their applications in fields such as herbicides, insecticides and plant-growth regulators (Anthiline \& Taketa, 1982).

(I)

The molecular structure of the title thiourea derivative, (I), is shown in Fig. 1. The molecule is non-planar; the dihedral angles between the thiourea and pyridine planes and between the thiourea and benzene planes are 41.28 (8) and 27.47 (8) ${ }^{\circ}$, respectively. The carbonyl and thiocarbonyl groups are located on the opposite sides of the N3-C6 bond. The carbonyl group forms an intramolecular hydrogen bond with the N2-imino group (Table 1). This is similar to that found in N-benzoyl- N^{\prime}-(2-hydroxyethyl)thiourea (Zhang et al., 2006).
$\pi-\pi$ stacking is observed in the crystal structure of (I) (Fig. 2). The centroid-to-centroid separation between parallel benzene rings related by an inversion center at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ is 3.7275 (17) \AA; the centroid-to-centroid separation between parallel pyridine rings related by an inversion center at $\left(0,-\frac{1}{2}, 0\right)$ is $3.7767(18) \AA$.

Figure 1
The molecular structure of (I), with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).

Figure 2
The packing of (I); H atoms have been omitted for clarity.

Experimental

The reaction of $2.82 \mathrm{~g}(0.02 \mathrm{~mol})$ of benzoyl chloride, 2.29 g $(0.03 \mathrm{~mol})$ of ammonium thiocyanate and $1.70 \mathrm{~g}(0.02 \mathrm{~mol})$ of 3 aminopyridine in 25 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under solid-liquid phase-transfer catalysis conditions (0.37 g of 3% polyethylene glycol-400) gave the title compound. The solid product was filtered off, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water in turn, and dried under reduced pressure. Recrystallization from chloroform solution gave single crystals of (I).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{OS} \\
& M_{r}=257.31 \\
& \text { Triclinic, } P \overline{1} \\
& a=7.828(2) \AA \\
& b=8.688(2) \AA \\
& c=10.892(3) \AA \\
& \alpha=111.785(3)^{\circ} \\
& \beta=92.152(4)^{\circ} \\
& \gamma=111.499(4)^{\circ}
\end{aligned}
$$

$$
V=627.0(3) \AA^{3}
$$

$$
Z=2
$$

$$
D_{x}=1.363 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
$\mu=0.25 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colorless

$$
0.25 \times 0.15 \times 0.06 \mathrm{~mm}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) $T_{\text {min }}=0.930, T_{\text {max }}=0.985$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0512 P)^{2}\right. \\
& \quad+0.1913 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.19 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.21 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O} 1$	0.86	1.87	$2.597(2)$	141
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.86	2.34	$3.164(3)$	162

Symmetry code: (i) $x, y-1, z$.
H atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and refined in riding mode with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Foundation of Gansu (ZS031-1325-003-Z) and the Qinglan Talent Foundation of Lanzhou Jiaotong University.

References

Anthiline, W. \& Taketa, F. (1982). J. Inorg. Biochem. 16, 145-154.
Bruker (2003). SAINT (Version 6.45A) and SMART (Version 5.059). Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.
Zhang, Y.-M., Xian, L., Wei, T.-B. \& Cai, L.-X. (2003). Acta Cryst. E59, o817o819

[^0]: (C) 2006 International Union of Crystallography All rights reserved

